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Abstract

This paper describes a number of improvements to a method, developed in this laboratory and described in J. Magn. Reson. 85

(1989) 111–113, which makes it possible to determine values of long-range 13C–1H coupling constants from heteronuclear multiple

bond correlation (HMBC) spectra. First, it is shown how pulsed-field gradients can be introduced into the HMBC experiment

without perturbing the form of the cross-peak multiplets; a one-dimensional version of the experiment is also described which

permits the rapid measurement of a small number of couplings. Second, the experiment is modified so that one-bond and long-range

cross-peaks can be separated, and so that the one-bond cross-peaks have more reliable intensities. Finally, it is shown how these one-

bond cross-peaks can be used to advantage in the fitting procedure.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

The heteronuclear multiple bond correlation

(HMBC) [1] experiment has become the standard way of

detecting the presence of long-range 13C–1H couplings

in small- to medium-sized molecules. However, from
such a spectrum it is not at all straightforward to de-

termine the numerical value of the coupling constant.

The difficulty derives from the fact that the multiplets in

the proton (F2) dimension have complex phase proper-

ties due to the evolution of proton–proton couplings

and proton chemical shifts (offsets); in addition, the

long-range coupling appears as an anti-phase splitting.

It is thus not possible to identify, from the multiplet, a
splitting which corresponds to the value of the long-

range coupling constant.

Previous work from this laboratory [2] introduced a

fitting procedure which makes it possible to determine a

value for the long-range coupling constant from an
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HMBCmultiplet. The procedureworks by comparing the

HMBCmultiplet with the correspondingmultiplet from a

conventional proton spectrum (called the template); a

least-squares fitting procedure, involving just two pa-

rameters, yields a value for the long-range C–H coupling.

If the conventional proton spectrum is crowded, the
proton multiplets needed for the fitting procedure can be

obtained from two-dimensional spectra provided that the

multiplets are in-phase and otherwise undistorted. For

example, such multiplets can be obtained from TOCSY

spectra [3] in which the anti-phase dispersive contribu-

tions have been suppressed effectively [4].

In this paper we describe a number of developments

of this basic approach. First, the HMBC experiment is
updated by the use of gradient pulses so that high-

quality data can be obtained; we also discuss the prob-

lem of phasing such spectra. Second, an experimental

approach is described which makes it possible to obtain,

from one set of experimental data, both the HMBC

spectrum and a complete one-bond correlation spectrum

from which templates can be obtained. Obtaining the

templates in this way is convenient as, compared to the
conventional proton spectrum, the likelihood of overlap

is reduced. We also introduce a new way in which these
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one-bond cross-peaks can be used in the fitting proce-
dure. The utility of the whole approach is illustrated by

measuring the values of numerous long-range couplings

in strychnine.

Finally, we introduce a one-dimensional version of

the HMBC experiment which results in multiplets that

can be analysed in the same way as those from the two-

dimensional experiments. In cases where only a few

couplings are of interest, a selective experiment such as
this may be an attractive alternative to recording a two-

dimensional experiment.

1.1. Software available

The fitting procedure itself is not computationally

demanding and can be implemented on a desk-top

computer. We have developed a program which does
this within Bruker�s XWIN-NMR; this software, along

with test data and relevant pulse sequences, is available

without charge from the authors� web site (www.keeler.

ch.cam.ac.uk).
2. The basic HMBC experiment and fitting procedure

The way in which the fitting procedure works and the

required modifications to the HMBC experiment have

been described in the earlier work from this laboratory

[2]. However, it is useful to repeat these here as they

form the basis for the description of subsequent modi-

fications, which are the topic of this paper.

The pulse sequence for the basic HMBC experiment is

shown in Fig. 1A. Proton magnetization excited by the
first pulse evolves during the preparation delay, D, to
become anti-phase with respect to the long-range C–H

coupling; this anti-phase magnetization is converted into

heteronuclear multiple quantum coherence by the first
13C pulse. The coherence evolves for time t1 during which
it acquires a phase label according to the 13C offset; the

evolution of the proton offset during t1 is refocused by

the centrally placed 180� pulse on proton. Finally, the
second 13C pulse returns the multiple quantum coherence

to proton magnetization which is anti-phase with respect

to the (active) long-range C–H coupling.

Although the proton 180� pulse refocuses the evolu-

tion of the proton offset over the time t1, both the offset

and any proton–proton couplings evolve throughout the

delay D, thus giving rise to a phase modulation of the

observed signal. As D has to be comparable with
1=ð2nJCHÞ, the evolution of any proton–proton cou-

plings present is certainly significant. It is this modula-

tion, combined with the presence of the anti-phase

splitting with respect to the C–H coupling, that gives the

HMBC multiplet its complex phase properties.

For the fitting procedure to work correctly, it is

essential that the phase modulation in the HMBC
experiment is identical to that which would arise from a
simple delay D. In the basic HMBC experiment this is

not the case, due to the presence of the proton 180�
pulse. However, the required phase modulation can be

achieved by adding a second proton 180� pulse at the

end of t1, as shown in Fig. 1A. This extra pulse effec-

tively restricts the refocusing effect of the first 180� pulse
to the t1 period. From now on we will assume that it is

this slightly modified form of the HMBC experiment
which is being discussed.

The HMBC spectrum is invariant to the sign of the C–

H coupling, so the fitting procedure can give no infor-

mation in this regard. Therefore, throughout this work

we are only able to quote the magnitude of the coupling

constant. It should also be pointed out that splittings due

to proton–proton couplings appear in the F1 dimension of

HMBC spectra, leading to ‘‘tilted’’ multiplets. Normally,
the resolution in this dimension is too low to resolve these

splittings, so only a single line is present in F1. Our

analysis from now on assumes that this is the case.

2.1. The fitting procedure (Method I)

The way in which the fitting procedure works is best

envisaged in the time domain. If we imagine taking a
cross-section parallel to F2 (the proton dimension)

through a cross-peak in an HMBC spectrum, the time-

domain signal corresponding to the cross-peak can be

written as

SHMBCðt2Þ ¼ AHMBC � Sprotonðt2 þ DÞ � sinðpJCHt2Þ; ð1Þ

where JCH is the long-range coupling responsible for the

cross-peak and AHMBC is the overall amplitude; the fac-

tor sinðpJCHDÞ, which describes the dependence of the

amplitude of the cross-peak on the preparation delay, is

included in AHMBC. In Eq. (1) the term sinðpJCHt2Þ results
in the observed multiplet being anti-phase with respect
to the active coupling JCH.

Sproton is the time-domain signal corresponding to the

normal proton multiplet, with no C–H coupling present,

such as would be acquired in a conventional pulse-ac-

quire experiment. This signal can be written as:

Sprotonðt2Þ ¼ expðiXH1
t2Þ �

Y
i

cosðpJH1Hi t2Þ; ð2Þ

where XH1
is the offset of the proton involved in the

cross-peak (proton 1) and JH1Hi is the coupling of proton

1 to proton i. The product of cosine terms simply ex-

presses, in the time domain, the successive in-phase

splittings that each of these couplings causes. Note that,

in contrast to the anti-phase C–H coupling, these in-

phase H–H couplings are represented by cosine terms.

In the expression for SHMBCðt2Þ, Eq. (1), the term

Sprotonðt2 þ DÞ shows that at the start of acquisition (i.e.,
t2 ¼ 0) there has already been evolution of the proton

offset and proton–proton couplings for time D.
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Fig. 1. Pulse sequences for different variants of the basic HMBC experiment. Radiofrequency pulses applied to proton and carbon are shown on the

lines marked 1H and 13C, respectively; filled rectangles indicate 90� pulses, and open rectangles indicate 180� pulses. Pulse field gradients are shown in

the line marked G. Sequence (A) is the conventional HMBC experiment, except that an extra proton 180� pulse is included at the end of t1; see text for
details. Sequence (B) is a gradient-selected HMBC experiment which has been designed specifically to produce multiplets with the same phase

properties as those from sequence (A). The delays d are included simply to accommodate the gradient pulses G1 and G2. Sequence (C) shows how

evolution of the C–H coupling can be affected by the placement of an extra 13C 180� pulse at the start of the sequence; see text for details. Sequence
(D) is a new HMBC-type experiment which makes is possible to separate long-range from one-bond correlations, and also results in more even

intensities for the one-bond cross-peaks. As described in the text, several data sets are recorded with different values of sf and then recombined to give

the required spectra. In sequence (D) the phases are as follows: /1 ¼ ðx;�xÞ and /rx ¼ ðx;�xÞ; all other pulses are phase x. Sequence (E) is a one-

dimensional (selective) version of the HMBC experiment; the experiment is designed to give multiplets with identical phase properties to those from

sequences (A), (B), and (D). The selective element is a 180� pulse, duration tsel, flanked by the two gradients.
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The basis of our fitting method is the observation that

the phase modulation due to the evolution of the proton

offset and proton–proton couplings during delay D in

the HMBC experiment is identical in form to that found

for the simple 90�–D–acquire(t2) sequence. The signal
from this experiment can be written

S1Dðt2Þ ¼ Sprotonðt2 þ DÞ: ð3Þ
The only differences between S1Dðt2Þ and the signal

from the HMBC cross-peak (SHMBCðt2Þ) of Eq. (1) are
the amplitude and the presence of the sine term in the

latter.

The fitting procedure involves forming a trial multi-

plet by multiplying the time-domain signal for the

phase-modulated proton multiplet, S1Dðt2Þ of Eq. (3), by
a trial amplitude, Atrial, and a sine term to create an anti-
phase splitting, sinðpJtrialt2Þ:
Strialðt2Þ ¼ Atrial � S1Dðt2Þ � sinðpJtrialt2Þ

¼ Atrial � Sprotonðt2 þ DÞ � sinðpJtrialt2Þ: ð4Þ

We see that, provided Atrial ¼ AHMBC and Jtrial ¼ JCH,
Strialðt2Þ becomes identical to SHMBCðt2Þ of Eq. (1). This,
then, is the basis of a fitting procedure in which Atrial and

Jtrial are varied until Strialðt2Þ and SHMBCðt2Þ match as
closely as possible. This is achieved by minimizing the

following v2 function:

v2 ¼
Z t2;max

0

jStrialðt2Þ � SHMBCðt2Þj2 dt2: ð5Þ

In Eq. (5) we have allowed for the fact that the signals

are complex. For convenience we refer to this original

version of the fitting procedure as Method I.

It is convenient to perform the fitting routine in the
time domain, but the whole process can just as well be

envisaged in the frequency domain; Fig. 2 illustrates the

fitting process in the two domains.

The form of the phase modulation due to proton

offsets and proton–proton couplings is only the same in

the 90�–D–acquire(t2) and HMBC experiments if the

modified HMBC experiment of Fig. 1A is used. It is not

actually necessary to record the 90�–D–acquire(t2) ex-
periment. Rather, we simply record a conventional

proton spectrum and then left shift the time-domain

signal by a number of data points corresponding to the

time D.
It is important to make sure that, for both the HMBC

spectrum and the normal proton spectrum, we deal

with a single multiplet. This is achieved by excising the



Fig. 2. The basic fitting procedure (method I), described in detail in the

text, can be envisaged in either the frequency domain (shown on the

left) or time domain (shown on the right). At the top is the conven-

tional absorption-mode proton multiplet. The first step is to introduce

the phase modulation due to the preparation delay, D, in the HMBC

sequence; it is convenient to do this by left shifting the time-domain

signal by a number of data points corresponding to the delay D. Next,

the anti-phase splitting is introduced: in the frequency domain this is

achieved by convoluting (represented by �) the proton multiplet with

an ‘‘anti-phase stick multiplet’’ formed from two delta-functions sep-

arated by 2pJtrial rad s�1; in the time domain the same effect is achieved

by multiplication by Atrial sinðpJtrialt2Þ. These two steps generate a trial

multiplet which can then be compared with the multiplet from the

HMBC spectrum; the two parameters Atrial and Jtrial are adjusted in a

least-squares fitting procedure in order to obtain the best fit between

the trial and HMBC multiplets. In the diagram the trial multiplet has

been constructed using the values of these two parameters which give

the best fit. Note that the time- and frequency-domain signals are both

complex, but that only the real parts are plotted here.
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relevant multiplet from a one-dimensional spectrum or

cross section through a two-dimensional spectrum, by

setting to zero all of the data points which do not define

the multiplet. Having done this, the spectrum is inverse

Fourier transformed to generate the time-domain

signal, SHMBCðt2Þ or Sprotonðt2Þ. Only then is the left shift

applied to Sprotonðt2Þ in order to create the phase

modulation.
As an absorption mode spectrum has the best resolu-

tion, it is usual to phase the proton spectrum to absorp-

tion before the wanted multiplet is excised. However,

although the real part of the (phased) spectrum is in the

absorption mode, the imaginary part will contain the

much broader dispersion mode multiplet. To get around

this problem we excise the absorption mode multiplet

from the real part of the spectrum and then generate the
corresponding imaginary part using a Hilbert transform;

further details can be found in reference [5]. The resulting

complex frequency-domain signal can then be inverse

Fourier transformed to give the required time-domain

signal.
3. Introducing gradients into the HMBC experiment

For the fitting procedure to work as planned, it is

clearly important that the HMBC spectra are of the

highest quality. The use of pulsed field gradients for

coherence selection is therefore to be recommended, as it

is known that spectra recorded in this way are generally

superior to those recorded using phase cycling.

There are many different ways in which gradients can
be implemented into the HMBC experiment, but for the

fitting procedure described in the previous section to be

applicable, we have to be careful to ensure that the re-

sulting multiplets have exactly the same phase properties

as those obtained from the sequence of Fig. 1A.

One implementation which satisfies these require-

ments, and which we have found to yield good spectra,

is shown in Fig. 1B. This sequence is the same as that
proposed by Cicero et al. [6] but with the addition of an

extra 180� pulse on proton at the end of t1. As with

sequence (A), this extra pulse is needed so as to ensure

that the proton evolution is identical to that of the

simple 90�–D–acquire(t2) experiment. In fact, because of

the extra delays d needed to accommodate the gradients,

the proton offsets and couplings evolve for a time

ðDþ 2dÞ; this total delay must be used when construct-
ing the trial multiplet.

The 180� pulse on carbon allows selection of the re-

quired coherence order by the two gradients G1 and G2;

this pulse also refocuses any evolution of the carbon

offset which takes place during the two gradients. The

gradient ratio, G1=G2, is set to �4:975=2:975 to record

N -type data and �2:975=4:975 to record P -type data.

These two data sets are subsequently recombined in the
usual way to give a frequency-discriminated, absorption

mode spectrum [7].

3.1. Phase correction

The presence during t1 of several pulses of finite du-

ration makes it impossible to acquire data for t1 ¼ 0,

leading to large frequency-dependent phase errors in the
F1 (carbon) dimension. While these can, in principle, be

removed by manual phasing in the usual way, such large

linear phase corrections tend to resulted in distorted

baselines. However, Zhu et al. [8] have shown that if the

phase error across the spectrum is 180� or 360�, sub-
sequent correction does not lead to such baseline distor-

tions. Thus, all that is required is that the initial value of t1
be chosen to achieve such a phase error of 180� or 360�.

Referring to Fig. 1B, the delays during which the

carbon offset evolves can be identified as: the first period

t1=2, the duration of the first proton 180� pulse, the

second period t1=2, and the duration of the second

proton 180� pulse. The evolution over the two delays d
is, to a good approximation, refocused by the carbon

180� pulse.



ig. 3. The structure of strychnine, showing the numbering convention

sed.
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Suppose that the initial value set for the delay t1=2 is
t1;min=2. Then, for the first increment of the two-di-

mensional experiment, the time for which the carbon

offset evolves, tð0Þ1 , is

tð0Þ1 ¼ 2� ðt1;min=2Þ þ 2� t180; ð6Þ

where t180 is the duration of the 180� pulses. Zhu et al.

show that a linear phase correction of ðn� 180�Þ (where
n is an integer) will be obtained if tð0Þ1 satisfies

tð0Þ1 ¼ n
2
d1; ð7Þ

where d1 is the increment of t1, set by the required

spectral width in F1. In practice, t1;min=2 is chosen so that

Eq. (7) is satisfied. Finally, it should be noted that as the
time point t1 ¼ 0 is not being sampled, it is not necessary

to halve the value of the first data point.

For example, in the experiments reported below the

F1 spectral width of 181 ppm (22,624Hz at a proton

frequency of 500MHz) gives a t1 increment, d1, of

44.2 ls. The 180� pulse-length, t180, was 22.0 ls, so

Eq. (7) can be satisfied for n ¼ 2 by choosing

t1;min=2 ¼ 0:1 ls.
An alternative approach is to extend the second delay

d in the pulse sequences of Figs. 1B and D by tð0Þ1 given

in Eq. (6). This results in the refocusing of the evolution

of the carbon offset during the two proton 180� pulses

and t1;min; no frequency dependent phase correction is

then needed in F1.
In F2 there is, in general, no phase correction which

will result in absorption mode multiplets; phase correc-
tion is, therefore, superfluous. However, it is desirable to

phase the proton spectrum from which the templates are

to be taken so as to minimise the overlap between

multiplets. If this is done, it is essential to apply the same

correction to the HMBC spectrum so that the multiplets

are comparable. An alternative, which we have found

convenient, is leave the HMBC spectra unaltered and to

simply ‘‘undo’’ the phase correction of the proton
spectrum by applying to the template the opposite of the

original phase correction after the multiplet has been

excised.

There is one further matter to take into account in

respect of the phase in F2. This is the fact that, all other
things being equal, there is a 90� phase difference be-

tween the peaks in the HMBC and in the proton spec-

trum. In the simple proton experiment it is the in-phase
magnetization which is the origin of the observed signal.

In contrast, in the HMBC experiment, the proton

magnetization which is anti-phase with respect to the
13C ultimately leads to the observed signal. The evolu-

tion of in-phase magnetization (e.g., I1y) to anti-phase

magnetization (e.g., 2I1xSz) involves a shift from the y- to
the x-axis; this is the origin of the 90� phase shift be-

tween the two spectra. In practice, this phase shift is
accounted for by multiplying the trial multiplet by
F

u

expðip=2Þ ¼ i prior to the fitting i.e., Atrial should be

purely imaginary.

Fig. 4 shows the result of the fitting procedure ap-

plied to the C8–H13 cross-peak multiplet from strych-

nine (structure and numbering shown in Fig. 3). With

the correct choice of the two parameters, there is clearly

an excellent fit between the trial multiplet and the mul-

tiplet from the HMBC. The contour plot of v2, as de-
fined in Eq. 5, as a function of the two parameters shows

that the minimum is well defined so that it can easily be

located by a simple search program, such as the stan-

dard Levenberg–Marquardt algorithm [9].

Typically, we construct this contour plot using quite a

coarse grid of values for the two parameters. This en-

ables us to identify the approximate position of the

minimum, and then the values of the parameters at this
point are used as starting values for the Levenberg–

Marquardt algorithm. Usually, this leads to swift con-

vergence.

The two modified versions of the fitting procedure

described below involve further parameters, so it is not

easy to visualise how v2 depends on their values. In such

cases we use the best estimates we can for these addi-

tional parameters and then plot how v2 depends on Jtrial
and Atrial. The position of the minimum identified in

such a plot is used to obtain starting values for the

Levenberg–Marquardt algorithm which is then allowed

to alter the values of all of the parameters. When using

this approach, the minimum located by the Levenberg–

Marquardt algorithm may deviate somewhat from that

seen in the initial v2 contour plot.
4. Using one-bond cross-peaks as templates

It is often the case that cross-peaks arising from one-

bond C–H correlations appear in HMBC spectra. These

one-bond cross-peaks have identical structure to the

long-range cross-peaks i.e., both are phase modulated



Fig. 4. Experimental data showing application of the fitting procedure

(method I) to the strychnine C8–H13 cross-peak multiplet. The H13

multiplet shown in (A) was excised from the conventional proton

spectrum; the multiplet in (B) was excised from a cross section, taken

parallel to F2, of the HMBC spectrum, through the C8–H13 cross-

peak. Shown in (C) is the best-fit trial multiplet constructed as de-

scribed in the text; the agreement with (B) is excellent. Shown in (D) is

a contour plot of v2 (in arbitrary units), as defined in Eq. (5), as a

function of the two parameters Atrial and Jtrial. The minimum is clearly

visible at Jtrial ¼ 6:3Hz.

Fig. 5. Plot showing how the amplitude of one-bond and long-range

cross-peaks varies with the preparation delay, D. The thick and thin

solid lines shows how the amplitude of one-bond cross-peaks vary for

couplings of 135 and 125Hz, respectively. The grey line shows the

slower variation which is characteristic of the very much smaller long-

range coupling (here 8Hz). The significance of the times labelled

a; a0; . . . is explained in the text.
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by proton offsets and couplings, and anti-phase with

respect to the C–H coupling. However, as the one-bond

coupling is much larger than the width of the proton

multiplet, the one-bond and long-range cross-peaks look

rather different. For the one-bond cross-peak we see two

clearly separated proton multiplets, separated by the

one-bond coupling and disposed symmetrically about
the proton offset. In contrast, the long-range cross-peak

appears as a single complex multiplet.
Sheng et al. [10] have described a version of the fitting
procedure which uses these one-bond cross-peaks as the

templates. Such an approach is certainly attractive as all

of the data needed to determine a value for the long-

range coupling constant can be obtained from a single

experiment. In addition, there is likely to be less overlap

of the multiplets than in the simple proton spectrum.

However, there are two difficulties with using these one-

bond cross-peaks. The first is that for a typical value of
D of around 50 to 100ms, even the modest spread in the

values of one-bond couplings results in a large variation

in the intensity of the cross-peaks. Indeed, it is quite

common for a significant number of the possible one-

bond cross-peaks to be absent. The second difficulty is

that the one-bond cross-peaks may overlap the long-

range cross-peaks, making it impossible to use either for

data fitting.
It would therefore be desirable to modify the HMBC

experiment so that the one-bond cross-peaks have reli-

able intensities, and so that the two types of cross-peaks

can be separated. The latter aim can be achieved using

the MBOB method developed by Schulte-Herbr€uuggen
et al. [11]. First, we will describe the basis of this method

and then go on to describe how a similar approach can

be used to achieve more reliable intensities for the one-
bond cross-peaks.

4.1. Separating one-bond and long-range cross-peaks

The way in which the MBOB method works can be

understood by referring to Fig. 5. The thick and thin

solid lines show how the amplitude of the one-bond

cross-peaks vary with the preparation delay, D, for two
different values of the one-bond coupling constant; the

rapid modulation is a result of the large coupling con-

stant. The grey line shows a similar curve for the much
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smaller long-range coupling; in contrast, rather than an
oscillation we just see a steady rise. All the curves are

plots of the function sinðpJDÞ—all that is different is the

size of the coupling constant, J .
Consider recording two experiments with the prepa-

ration delays indicated by a and a0, separated by

1=ð1JCHÞ. Due to the properties of the sine wave, the

amplitudes of the one-bond cross-peaks in these two

experiments will be equal and opposite. Thus, if the two
experiments are added together, the one-bond cross-

peaks will cancel. In contrast, the amplitude of the long-

range cross-peaks for these delays a and a0 are both

positive and more or less the same; adding the two ex-

periments together will reinforce these cross peaks. On

the other hand, if the two experiments are subtracted,

the one-bond cross-peaks will be retained and the long-

range cross-peaks will more or less cancel. With this
approach, separate one-bond and long-range spectra

can be obtained from the same two data sets.

Fig. 1C shows how Schulte-Herbr€uuggen et al. im-

plement this idea by introducing a mobile 13C 180� pulse
at the start of the sequence. The preparation delay D is

extended by a time D0 and the extra 180� pulse is placed
during D0 and at a time sf after the start of the sequence;
sf can vary between zero and D0.

For this simplest MBOB experiment (called a first-

order filter) D0 is set to 1=ð21JCHÞ a delay which, for

compatibility with the subsequent discussion, we will

call s1. Two separate experiments are recorded for each

value of t1: in the first sf ¼ s1 ¼ 1=ð21JCHÞ; in the second

sf ¼ 0.

When sf ¼ 0 the C–H coupling evolves for the whole

time ðDþ s1Þ. When sf ¼ s1, the 180� pulse forms a spin
echo which refocuses the evolution of the coupling at a

time 2s1 after the start of the sequence; thus the C–H

coupling evolves for time ðD� s1Þ. The effective time for

which the coupling evolves in the two experiments thus

differs by 2s1 which, as s1 ¼ 1=ð21JCHÞ, is the required

difference of 1=ð1JCHÞ. The advantage of varying the

effective preparation delay in this way is that the proton

offsets and the proton–proton couplings evolve for time
ðDþ s1Þ in both cases.

Expressed mathematically, the amplitudes of the

cross-peaks in the two experiments vary as a function of

the preparation delay in the following ways:

Expt:1 : sinðpJðD� s1ÞÞ Expt:2 : sinðpJðDþ s1ÞÞ;
ð8Þ

where Expt. 1 and Expt. 2 correspond to sf ¼ s1 and

sf ¼ 0, respectively. The sum and difference of these two
can be written, using some elementary trigonometry, as:

Sum ¼ Expt:1þ Expt:2 ¼ 2 sinðpJDÞ cosðpJs1Þ;
Difference ¼ Expt:1� Expt:2 ¼ �2 cosðpJDÞ sinðpJs1Þ:

ð9Þ
For the long-range cross-peaks, ðpJs1Þ is a very small
angle so cosðpJs1Þ � 1 and sinðpJs1Þ � 0. As a result,

the long-range cross-peaks appear only in the sum

spectrum. For the one-bond cross-peaks, ðpJs1Þ is ap-

proximately ðp=2Þ, so cosðpJs1Þ � 0 and sinðpJs1Þ � 1.

As a result, the one-bond cross-peaks appear only in the

difference spectrum.

The separation is not perfect in part due to the range

of values taken by the one-bond C–H coupling making
it necessary to choose a compromise value of s1.
Schulte-Herbr€uuggen et al. show that the separation can

be improved by constructing higher-order MBOB filters.

For example, a second-order filter involves recording

four experiments in which the delay sf takes the suc-

cessive values ð0; s1; s2; s1 þ s2Þ, and where the delay D0

is ðs1 þ s2Þ. The values of s1 and s2 are given by

s1 ¼
1

2½1JCH;min þ 0:146ð1JCH;max � 1JCH;minÞ�
; ð10Þ

s2 ¼
1

2½1JCH;max � 0:146ð1JCH;max � 1JCH;minÞ�
; ð11Þ

where 1JCH;min and 1JCH;max are the lower and upper

bounds of the expected range of one-bond coupling

constants [12]. The sum of all four experiments contains

just the long-range cross peaks, whereas the one-bond

correlations appear in the combination of experiments
(1� 2� 3þ 4).
4.2. Generating more reliable intensities for one-bond

cross-peaks

The problem with the intensities of the one-bond

cross-peaks is illustrated clearly by Fig. 5. It would be

quite possible to choose accidentally a preparation delay
which resulted in zero (or close to zero) intensity for a

particular one-bond cross-peak. Of course, a small

change in the delay would result in this cross-peak

gaining significant intensity, but then another cross-peak

arising from a different value of the one-bond C–H

coupling constant might have zero intensity. In general,

there is no way of choosing a value of the preparation

delay such that all one-bond cross-peaks will appear
with significant intensity.

The broadband MBOB experiment [11] involves

adding together, in absolute value mode, experiments

recorded using different values of the preparation delay,

and so the one-bond cross-peaks are present with reli-

able intensities. However, such an approach is not

suitable for our purposes as phase-sensitive data is

needed by the fitting procedures.
Our solution to the problem of generating reliable

intensities for one-bond cross-peaks uses an approach

similar to the MBOB filter. Two experiments are re-

corded with values of the preparation delay which differ

by 1=ð21JCHÞ. Suppose the two delays correspond to



Table 1

Values of Deff and sf needed for a first-order MBOB filter, together

with more reliable intensities for one-bond cross-peaks, in the modified

HMBC sequence of Fig. 1D

Experiment Deff sf

1 Dþ s0 þ s1 0

2 D� s0 þ s1 s0
3 Dþ s0 � s1 s1
4 D� s0 � s1 s0 þ s1
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b and b0, shown in Fig. 5. For a one-bond coupling
constant of 135Hz, shown by the thick solid line, the

amplitude is positive when the delay is b and negative

when the delay is b0. Thus, we would obtain greater

overall amplitude by subtracting the two experiments.

On the other hand, for a one-bond coupling constant of

125Hz, shown by the thin solid line, the amplitudes are

positive at both b and b0, so the appropriate action

would be to add the two experiments together.
In general, as the value of the one-bond coupling is

unknown, we cannot determine in advance whether to

add or subtract the two spectra. Rather, both combi-

nations are computed, and then the most intense cross-

peaks are selected from one or the other. To determine

the separation of times b and b0 we use an average value

of the one-bond coupling constant, as in the first-order

MBOB filter.
The experimental implementation of this approach is

the same as for the MBOB experiment, Fig. 1C. How-

ever, for the present purpose, the extra delay D0 needs to

be 1=ð41JCHÞ; to avoid confusion with the previous

section we will call this delay s0. Two experiments are

recorded, one with sf ¼ s0 and one with sf ¼ 0. Thus, in

the two experiments the C–H coupling evolves for

ðD� s0Þ and ðDþ s0Þ, respectively.
Following the same analysis as before, the amplitudes

of the one-bond cross-peaks in the sum and difference of

the two experiments are

Sum ¼ 2 sin p1JCHD
� �

cos p1JCHs0
� �

;

Difference ¼ �2 cos p1JCHD
� �

sin p1JCHs0
� �

:
ð12Þ

As s0 ¼ 1=ð41JCHÞ, cosðp1JCHs0Þ, and sinðp1JCHs0Þ are

both 1=
ffiffiffi
2

p
:

Sum ¼
ffiffiffi
2

p
sin p1JCHD

� �
;

Difference ¼ �
ffiffiffi
2

p
cos p1JCHD

� �
:

ð13Þ

As was mentioned above, whether the sum or differ-

ence has the greater signal depends on the precise values

of the one-bond coupling and the preparation delay, D.
However, the key point is that this approach guarantees

that all of the one-bond cross-peaks will appear in either

the sum or the difference spectrum with reasonable

intensities.
Table 2

Values of Deff and sf needed for a second-order MBOB filter, together

with more reliable intensities for one-bond cross-peaks, in the modified

HMBC sequence of Fig. 1D

Experiment sf Experiment sf

1 0 5 s0
2 s1 6 s0 þ s1
3 s2 7 s0 þ s2
4 s1 þ s2 8 s0 þ s1 þ s2
4.3. Combining the two approaches

The separation of the one-bond and long-range cross-

peaks by a first-order MBOB filter can be achieved at

the same time as generating more reliable intensities for

the one-bond cross-peaks by recording four separate

experiments in which the C–H coupling is allowed to
evolve for the effective times, Deff , given in the following

Table 1.

As before, s0 ¼ 1=ð41JCHÞ and s1 ¼ 1=ð21JCHÞ. These
four experiments can be achieved experimentally using
the pulse sequence shown in Fig. 1D with the value of

the delay sf from the table and with D0 set to ðs0 þ s1Þ.
The combination (1þ 2þ 3þ 4) can be shown to

have the following variation of cross-peak intensity:

4 sinðpJDÞ cosðpJs0Þ cosðpJs1Þ: ð14Þ
This is the combination in which, on account of the

last term, the one-bond cross-peaks are suppressed. The

long-range peaks are present at full intensity as, for

small couplings, the last two terms are both very close to

one.
There are two combinations in which the long-

range cross-peaks are suppressed. The combination

(1þ 2� 3� 4) has the following variation of cross-peak

intensity

4 cosðpJDÞ cosðpJs0Þ sinðpJs1Þ; ð15Þ
whereas the combination (1� 2� 3þ 4) has the fol-

lowing variation:

4 sinðpJDÞ sinðpJs0Þ sinðpJs1Þ: ð16Þ
These two combinations have little intensity from the

long-range cross-peaks on account of the sinðpJs1Þ and
sinðpJs0Þ terms. As before, which experiment has the

greatest intensity for the one-bond cross-peaks depends

on the exact values of the one-bond coupling and the

delay D.
The separation of the long-range and one-bond cross-

peaks can be improved by using a second-order MBOB

filter. If this is combined with our method for giving

more reliable intensities for the one-bond cross peaks, a
total of eight separate experiments have to be recorded

with the values of sf given in Table 2; D0 is set to

ðs0 þ s1 þ s2Þ.
The sum of all eight experiments gives a spectrum

in which only the long-range cross-peaks are present.



Fig. 6. Part of the HMBC spectra of strychnine showing the clean separation of long-range and one-bond cross-peaks, and the more reliable in-

tensities of the latter, which can be obtained using the new method proposed here. Spectrum (A) is the sum of the eight separate experiments, re-

corded using the pulse sequence of Fig. 1(D) and the values of sf given in Table 2; only long-range cross-peaks are present. Spectra (B) and (C) are the

two combinations (of the eight experiments) which contain just the one-bond cross-peaks; the different intensities of particular cross peaks in the two

spectra are clearly visible. For each of the eight separate experiments, t1 was incremented in 128 steps to a maximum value of 5.7ms, and 8 transients

were recorded for each t1 value. The acquisition time was 0.8 s, and the recycle delay between experiments was 2.5 s. The delays D, s0, s1 and s2 were
51.2, 1.750, 3.073, and 3.928ms, respectively; D0 was therefore 8.751ms. The gradients G1 and G2 were of duration 1.95ms, of Gaussian shape and

truncated at the 1% level; their amplitudes were set to )29.75 and 49.75% (of the full intensity of 40G cm�1) for the P -type and )49.75% and 29.75%

for the N -type spectrum. The delay d was 2ms. Spectra were recorded at 500MHz for proton, the total experiment time was 13 h and the sample

concentration was approximately 120mM in CDCl3.
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The other two combinations which contain only the one-

bond cross-peaks are: (1� 2� 3þ 4þ 5� 6� 7þ 8),

the intensity in which depends on sinðpJDÞ, and

(1� 2� 3þ 4� 5þ 6þ 7� 8), the intensity in which
depends on cosðpJDÞ.

Fig. 6 shows spectra of strychnine recorded using this

approach. The spectra demonstrate both the clean sep-

aration of long-range and one-bond cross-peaks which

can be obtained, and the different intensities of the

cross-peaks in the two combinations (B) and (C) in

which only one-bond cross-peaks appear.
5. Fitting using one-bond templates

As has been mentioned earlier, multiplets from the

one-bond cross-peak can be used as templates in the

fitting procedure so as to obtain estimates of the long-

range couplings. There are two ways to proceed: the

first, originally described by Sheng et al. [10], is to use
one half of the one-bond cross-peak as a template; the

second, described here for the first time, is to use the

whole cross-peak as a template.

The two halves of the one-bond cross-peak are sep-

arated by 1JCH, which is much greater than the typical

width of a proton multiplet. We might therefore expect

that the two halves can be separated cleanly from one

another. This is the case if the multiplet is in absorption
mode, but in HMBC spectra the multiplets are in any-

thing but absorption mode. When dispersion contribu-

tions are present, significant overlap between the two

sides of the one-bond cross-peak can be seen, as shown

by the fact that the baseline between them does not

return to zero (see, for example, Fig. 10A). In such
circumstances an entirely clean separation of the two

halves is not possible and this is why it may be prefer-

able to use the entire one-bond cross-peak.

One-bond cross-peaks are, of course, only available
for protons which are directly attached to carbon. It is

thus not possible to use the approach described in this

section for measuring couplings to NH or OH protons,

for example.

5.1. Fitting using one half of the one-bond cross-peak:

Method II

Both halves of the one-bond cross-peak already have

the necessary phase modulation due to the evolution of

proton offsets and proton–proton couplings during the

preparation delay. So, all that we need to do is excise

one side or the other, and then shift it by half of the one-

bond coupling so that the excised multiplet is centred at

the proton shift. Then the anti-phase coupling is intro-

duced to create the trial multiplet which can be com-
pared to the HMBC multiplet, just as before. Shifting

the multiplet by half of the one-bond coupling is per-

formed in the time-domain.

The overall fitting process can be described in the

following way and is also illustrated in Fig. 7. The time-

domain signal corresponding to a one-bond cross-peak

can be written

Sone-bondðt2Þ ¼ Aone-bond � Sprotonðt2 þ DÞ
� sin p1JCHt2

� �
: ð17Þ

The final term is the one which gives rise to the large

anti-phase splitting by the one-bond coupling, 1JCH.
In order to separate out the two sides of the multiplet

we write the sine in terms of exponentials:



Fig. 7. Illustration of a method, introduced by Sheng et al. [10], by

which a one-bond bond cross-peak can be used to generate a trial

multiplet; we term this approach method II. First, a cross section

containing the one-bond multiplet is taken from the two-dimensional

spectrum; note that the phase modulation due to the evolution of

proton shifts and couplings is already present. Then, one half of the

multiplet is excised (here the left-hand side) and shifted to the right by

half the one-bond coupling; this centres the multiplet at the proton

offset. Finally, the shifted multiplet is convoluted with an anti-phase

stick multiplet (as in Fig. 2) so as to introduce the trial anti-phase

coupling.
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sin p1JCHt2
� �

¼ 1

2i
exp ip1JCHt2

� ��
� exp

�
� ip1JCHt2

��
:

ð18Þ
Selecting the right or left part of the multiplet involves

selecting just one of these terms; arbitrarily we shall

select the first one. Then the time domain signal becomes

Shalf one-bondðt2Þ ¼
1

2i
Aone-bond � Sprotonðt2 þ DÞ

� exp ip1JCHt2
� �

: ð19Þ
The shift required to centre the multiplet at the proton
offset is ð�p1JCHÞ rad s�1; this is achieved in the time

domain by multiplying by expð�ip1Jtrialt2Þ. We have al-

lowed for the fact that we may not know the value of the

actual one-bond coupling, so will need to use a trial

value, 1Jtrial.
The final step is to introduce the anti-phase long-

range coupling by multiplying by sinðpJtrialt2Þ and, as

before, introducing an amplitude factor:

Strialðt2Þ ¼ Atrial � Shalf one-bondðt2Þ � sinðpJtrialt2Þ
� exp

�
� ip1Jtrialt2

�

¼ 1

2i
AtrialAone-bond � Sprotonðt2 þ DÞ

� sinðpJtrialt2Þ � exp ip1JCHt2
� �

� exp
�
� ip1Jtrialt2

�
: ð20Þ

This function for the trial multiplet is compared with

that for the long-range cross-peak (Eq. 1) in a least-

squares fitting procedure. The parameters to be adjusted
are the trial amplitude, the trial long-range coupling and

the trial one-bond coupling. In practice, we have found

that it is sufficient to estimate the one-bond coupling

from the spectrum and then just use this value for 1Jtrial
without further adjustment.

Fig. 8 shows this version of the fitting procedure in

action for the C8–H13 cross-peak in strychnine. As be-

fore, with the correct choice of parameters, the trial
multiplet is an excellent fit for the long-range cross-peak

multiplet.

The overall amplitude of the one-bond cross-peak

depends on sinðp1JCHDÞ and that of the trial multiplet

depends on sinðpJtrialDÞ. Thus, as Jtrial is altered in the

fitting procedure, the value of Atrial can be found simply

from a knowledge of the size of these two couplings

(indeed, this observation is the basis of a fitting proce-
dure described by Zhu and Bax [13]). In our method

Atrial is a freely adjustable parameter; we have found that

this choice does not significantly affect the values of

the long-range couplings determined by the fitting

procedure.
5.2. Fitting using the entire one-bond cross-peak: Method

III

The second way of using the one-bond cross-peak

involves using the whole cross-peak, rather than just half

of it. In contrast to the previous case, both the one-bond

and long-range cross-peaks are manipulated.

The fitting procedure involves splitting the long-range

multiplet by a trial anti-phase one-bond coupling, 1Jtrial,
and splitting the whole one-bond cross-peak by a trial
anti-phase long-range coupling, Jtrial. The two resulting

multiplets are then compared in a least-squares fitting

procedure with the overall amplitude and the two trial



Fig. 8. Experimental data showing method II being used to determine

the value of the long-range C–H coupling from the C8–H13 cross-peak

multiplet in strychnine. In contrast to Fig. 4, rather than using a

multiplet from the proton spectrum, half of the one-bond cross-peak is

used to construct the trial multiplet. Spectrum (A) shows the right-

hand half of the one-bond cross-peak (i.e., that between C13 and H13)

which has been excised from a cross-section through the modified

HMBC spectrum. Spectrum (B) shows the HMBC (long-range) mul-

tiplet which is to be fitted, and (C) shows the best fit trial multiplet

constructed from (A); the agreement between (B) and (C) is excellent.

Also shown is a plot of v2 as a function of the two parameters Atrial and

Jtrial; to compute this plot 1Jtrial is set to 125Hz and the trial isotope

shift, �, is set to zero.

Fig. 9. Illustration of fitting method III in which a one-bond cross peak

is used to generate a trial multiplet. On the left are shown the ma-

nipulations which are applied to the whole one-bond cross-peak. First

the multiplet is excised from a suitable cross-section from the two-

dimensional spectrum. Then, the trial anti-phase long-range coupling

is introduced, as before, by convolution. On the right are shown the

manipulations which are applied to the long-range cross-peak.

The multiplet is excised and then the one-bond coupling is introduced.

The resulting multiplets at the bottom on the left and the right can now

be compared and the best-fit values of Jtrial, 1Jtrial, and Atrial found.
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couplings being the adjustable parameters. The whole
process is illustrated in Fig. 9.

The fitting process can be described mathematically

in the following way. The long-range multiplet is

described by the function SHMBCðt2Þ in Eq. (1); this
function is multiplied by sinðp1Jtrialt2Þ to generate the

large anti-phase splitting

S0
HMBCðt2Þ ¼ SHMBCðt2Þ � sin p1Jtrialt2

� �
¼ AHMBC � Sprotonðt2 þ DÞ � sinðpJCHt2Þ

� sin p1Jtrialt2
� �

: ð21Þ

The one-bond multiplet is described by the function

Sone-bondðt2Þ of Eq. (17). This function is multiplied by

sinðpJtrialt2Þ, to generate the small anti-phase splitting; a

trial amplitude is also included

S0
one-bondðt2Þ ¼ Atrial � Sone-bondðt2Þ � sinðpJtrialt2Þ

¼ AtrialAone-bond � Sprotonðt2 þ DÞ
� sin p1JCHt2

� �
� sinðpJtrialt2Þ: ð22Þ

We now see that provided the parameters Atrial, Jtrial,
and 1Jtrial have the appropriate values, S0HMBCðt2Þ and

S0one-bondðt2Þ are identical. The optimum values of these

parameters are found in a least-squares fitting proce-

dure, as described above. As before, we have found it

sufficient to estimate 1Jtrial from the spectrum and then

leave this parameter fixed.
Fig. 10 shows this version of the fitting procedure in

action for the C8–H13 cross-peak in strychnine. As be-

fore, with the correct choice of parameters, the two

manipulated multiplets are in close agreement.

5.3. Isotope shifts

When using one-bond cross-peaks as templates in the
fitting process, it is important to recognise that a one-

bond and a long-range cross-peak involving the same



Fig. 10. Experimental data showing fitting method III being used on

the C8–H13 cross-peak multiplet from strychnine. In contrast to Fig.

8, rather than using one side of the one-bond cross-peak multiplet, the

whole multiplet is used. Spectrum (A) shows the complete one-bond

multiplet and spectrum (B) is the long-range multiplet into which the

one-bond anti-phase coupling has been introduced. Spectrum (C)

shows the effect of introducing the anti-phase splitting due to the long-

range coupling into the multiplet shown in (A). At the optimum value

of the long-range coupling (used here to construct (C)), there is ex-

cellent agreement between (B) and (C). Also shown is a plot of v2 as a
function of the two parameters Atrial and Jtrial; to compute this plot
1Jtrial is set to 125Hz and the trial isotope shift, �, is set to zero.
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proton may not be centred at precisely the same offset in

F2. This is because when the proton is directly attached
to a 13C atom, as it is in the molecules which lead to the

one-bond cross-peak, its chemical shift may be slightly

different to the case where the same proton is attached to

a 12C atom, as it is for molecules which lead to the

long-range cross-peak. This small difference is called an

isotope shift.
The presence of this isotope shift means that the trial
multiplet will never quite match the HMBC multiplet no

matter what values of the trial amplitude and coupling

are used. However, it is a simple matter to shift the offset

of the trial multiplet by multiplying it in the time domain

by expði�t2Þ, where � is a trial shift which may be positive

or negative. This shift simply becomes another parameter

in the least-squares fitting procedure, and so its value is

optimised along with the values of the other parameters.
Typically, we have found that incorporating this shift

significantly improves the fit between the trial andHMBC

multiplets. Shifts of up to 1Hz are not uncommon.

It should be noted that in fitting method II, which

uses half of the one-bond cross-peak, introducing this

parameter to allow for isotope shifts is identical to al-

lowing variations in the value of the trial one-bond

coupling.
The contour maps of v2 as a function of Atrial and Jtrial

shown in Figs. 8 and 10 are constructed using estimated

values of the one-bond coupling and zero isotope shift.

The position of the minimum in these plots does not

necessarily correspond, therefore, to the position of the

minimum which will be found when all of the parame-

ters are allowed to vary. For example, in the case of

Fig. 10, the v2 plot shows a minimum at Jtrial ¼ 7:0Hz,
but when the isotope shift is allowed to vary, the

Levenberg–Marquardt algorithm finds the minimum to

be at 6.4Hz.

5.4. Comparability of the trial and long-range cross-peaks

It is implicit in our discussion that the linewidth in the

long-range and one-bond cross-peaks is the same. This
may not be true as the proton which gives rise to the

one-bond cross-peak is directly attached to a 13C,

whereas the proton which gives rise to the long-range

cross-peak is attached to a 12C. The former proton will

relax more quickly due to the extra dipolar interaction

present. For most protons this extra interaction will be a

small contribution to the relaxation rate, but it is pos-

sible that the effect would be much larger for a proton
which is very isolated from other sources of relaxation;

we have not come across such a case.

It has been assumed throughout that the spin system

is weakly coupled. Strong coupling causes complications

as multiplet structures are perturbed; in addition, the

degree of strong coupling can be different in the long-

range cross-peak and in both halves of the one-bond

cross peak. Richardson et al. [14] have considered the
effects of strong coupling on the fitting method.
6. A one-dimensional experiment

From a two-dimensional HMBC experiment we

should be able to measure a value for the coupling



Fig. 11. Cross-peak multiplets arising from long-range correlations to

C12 in strychnine. Spectrum (A) was obtained using the one-dimen-

sional pulse sequence of Fig. 1E whereas (B) was obtained from a two-

dimensional HMBC experiment. Note that, as required, the multiplets

from the one-dimensional experiment are essentially identical to those

from the two-dimensional HMBC. The parameters for the two-

dimensional experiment are as in the caption to Fig. 6. For the

one-dimensional experiment 1024 transients were recorded using an

acquisition time of 0.8 s and a recycle delay between experiments of 1 s.

The delays D and d were 55 and 2ms, respectively. The gradients G1

and G2 were of duration 1.95ms, of Gaussian shape and truncated at

the 1% level; their amplitudes were set to 29.76 and 49.76% (of the full

intensity of 40Gcm�1). The selective 180� pulse was of duration 5ms,

of Gaussian shape and truncated at the 1% level. The total experiment

time was 31min.
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constant from the majority of the cross-peaks. Having
such complete data from one experiment is an advan-

tage, but there may be occasions when only a small part

of the data is actually required—for example, where a

question of stereochemistry can be resolved by mea-

suring just one long-range coupling. In such situations, a

selective one-dimensional version of the HMBC exper-

iment may well be an attractive option as it can be re-

corded quickly and conveniently.
A large number of such selective experiments have

been proposed over the years [15]. For our present

purposes, the main requirement is that the fitting pro-

cedure developed for the two-dimensional HMBC can

be applied to data from the one-dimensional experi-

ment. A pulse sequence which satisfies this requirement

is shown in Fig. 1E.

This sequence is essentially an HMBC experiment in
which t1 has been replaced by a selective echo on 13C;

only long-range couplings to the carbon (or carbons)

which experience the selective 180� pulse will give rise to
observable signals. All other signals are suppressed ef-

fectively by the two gradients which flank the selective

pulse. The proton offset and proton–proton couplings

evolve for the total time ðDþ 2dþ tselÞ, where the time

periods are defined in Fig. 1E.
Ideally, one would like to decouple the protons dur-

ing the selective pulse to 13C. However, we have found it

difficult to achieve this without at the same time dis-

rupting severely the evolution of the proton magneti-

zation. In principle, it should be possible to minimise

this effect by applying complete cycles of a cyclic de-

coupling sequence such as WALTZ-16 [16]; we have had

limited success with such an approach.
Since the selective pulse is applied to the proton-

coupled 13C spectrum, the bandwidth of the pulse must

be set to encompass a multiplet split by the large one-

bond C–H coupling, unless it is a quaternary carbon

which is being excited. It is possible to set the selective

pulse to excite part of the multiplet (e.g., half of a

doublet), although this will result in a loss of intensity.

The selective pulse is on resonance for the 13C of
interest, so it is not necessary to be concerned about the

evolution of the offset. However, the pulse itself may

give rise to a phase shift and this in turn will lead to a

phase shift of the observed proton multiplet; clearly such

a phase shift must be avoided as its presence would in-

validate the fitting procedure. Our experience has been

that with modern spectrometers, which are generally

capable of attenuating the radio-frequency power level
without introducing significant phase shifts, no prob-

lems associated with the phase of this selective pulse

were found. If such phase errors are a problem, then a

solution would be to use a double echo [17].

Fig. 11 shows three multiplets all arising from long-

range correlations between H8, H23b, and H23a to C12

in strychnine. Spectrum (A) was obtained using the one-
dimensional pulse sequence of Fig. 1E, whereas (B) was

obtained using the modified HMBC sequence of Fig. 1D.

The data show that, as is required, the one-dimensional

experiment produces essentially identical multiplets to

those found in the two-dimensional HMBC. The mul-

tiplets from the one-dimensional experiment can there-
fore be analysed in exactly the same way as those from

the two-dimensional experiment.
7. Results and discussion

Table 3 presents values for long-range couplings in

strychnine which have been measured using method I
(taking the template from the proton spectrum) and

method III (using the whole one-bond cross-peak as the

template).Where they are available, the values of these

couplings reported in the literature are also given.

A smaller number of couplings have also been mea-

sured using method II (using half the one-bond cross-

peak as the template), particularly in cases where the

results from methods I and III do not agree; we find this
to be a useful check. For example, methods I and III

give substantially different values for the C23–H12

coupling; method II gives a value in close agreement

with that from method I, indicating that this is indeed

the correct value.

Generally speaking, for couplings greater than about

2.5Hz, there is good agreement between the values

derived from the three methods; we can thus have



Table 3

Values of long-range C–H couplings (in Hz) in strychnine determined

using different fitting procedures

C label H labela Method I Method III Method II Literature

15 13 3.5 3.4 6.6c

14 4.6 4.7 4.7c

8 6.3 6.4 6.3

12 0.6 0.8 1.2b

21 7.8 7.5 7.4b

14 15b 3.2 3.6 4.8c

13 3.3 3.5 3.8b, 4.6c

16 2.7 3.0

21 6.0 6.0 6.1b

7 17 3.2 y 3.1 3.2c

16/8 5.6 5.5

6 1.9 y 1.8

14 15a 1.8 2.8 2.8 3.2c

13 8.0 8.1 7.9c,7.7b

7 7.2 7.3 7.3c

16 4.5 4.3

12 0.9 2.3 2.1

21 0.9 1.4 1.9b

12 11b 7.0 6.9 7.1b

10 7.9 7.9 7.4b

14 20b 5.4 5.3 5.5c

18 3.5 3.1 3.4 3.6c

16 6.9 6.9

22 4.5 4.6

21 2.4 1.0 1.0

17 18b 5.6 5.1 4.9c

20 7.1 7.1 7.4c

13 11a 3.4d 3.3

12 2.5d 0.8 0.8 1.7b

10 5.8d 6.5 5.6 6.4b

17 18a 2.7 3.2 3.5 2.4c

7 4.6 5.2 5.2c

16 y 4.3

18 20a 9.3 9.6 9.5 9.5c

22 6.1 5.8

21 4.9 4.6

17 8 5.9 5.9 5.9c

7 2.5 2.4 2.6c

12 5.5 5.6 5.4b

6 3.7 3.7

5 3.2 3.1

12 23a 5.6 5.7

22 3.8 4.0

21 3.3 3.2

12 23b 8.6 8.2

22 4.0 3.9

21 8.5 8.3

8 12 5.8 5.9 5.8

23 2.4 6.8 2.4

10 y y 5.8

14 22 7.9 8.5 8.6 8.9c

20 4.9 5.6 5.1 12.5c, 5.7b

23 5.7 7.1 7.1 6.2b

2 4 7.5 7.4

6 5.5 5.5

5 0.9 0.8

aDiastereotopic pairs labelled according to reference [18].
bAverage value of results quoted in reference [19].
c Taken from reference [18].
d Template taken from TOCSY spectrum.
�Analysis failed to converge to a satisfactory result.
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confidence in all of these methods. For smaller cou-
plings, there tend to be significant differences between

the values determined by the different methods. Such

small couplings give rise to weaker cross-peaks and, in

addition, the anti-phase splitting starts to become

comparable with the linewidth. As a result, the mini-

mum in the v2 map becomes shallower so that the pre-

cise location of the minimum itself is more easily

perturbed by noise or experimental imperfections; this is
what accounts for the variation in the results given by

the different methods. For this data set, which is typical

of what one might expect, we conclude that it would be

unwise to interpret, in a quantitative way, any values

below approximately 2.5Hz. This limit can be lowered

by improving the signal-to-noise ratio (for example, by

increasing D) and, if possible, the resolution.

The shape of the v2 map is also influenced by the
form of the HMBC multiplet. For example, multiplets

which have complex structures, such as that shown in

Fig. 4B, tend to give v2 maps in which there is a single

well-defined minimum. We can understand this by re-

alizing that it is only when the value of the trial coupling

is correct that all of the details will match between the

HMBC and trial multiplet. On the other hand, if the

HMBC multiplet is rather featureless, the minimum in
the v2 map is less well defined and so the resulting value

of the coupling is less reliable.

Occasionally, the v2 plot does not show one well-

defined minimum, such as those seen in Figs. 4, 8,

and 10. For example, fitting the C10–H12 cross-peak

using method I gives the v2 plot shown in Fig. 12.
Fig. 12. Contour plot of v2 found when fitting the C10–H12 multiplet

from strychnine using method I. Contours are plotted at evenly spaced

intervals and are labelled 1, 2,. . . as the level rises. Three minima, in-

dicated by d, are clearly visible; see text for discussion.
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The global minimum is at Jtrial � 0:5Hz, but there are
subsidiary minima at 5.8 and 10.5Hz. Given the in-

tensity of the cross-peak, it is inconceivable that the

coupling can be as small as 0.5Hz, so despite this

corresponding to the global minimum, we are forced to

reject the value.

If the trial multiplets are inspected by eye it is found

that for Jtrial ¼ 0:5Hz there is quite close agreement

with the HMBC multiplet, but that the fit does not
appear to be so good when Jtrial ¼ 5:8Hz. A further

check is provided by comparing the C10–H12 cross-

peak with the C8–H12 cross-peak. For the latter, the

fitting procedure straightforwardly gives a value of

around 5.8Hz for the long-range coupling. However,

this cross-peak has little resemblance to the C10–H12

cross-peak; this casts doubt on the C10–H12 coupling

being 5.8Hz as indicated by the subsidiary minimum in
the v2 plot. The lesson to be drawn from this discus-

sion is that when multiple minima are present, caution

is needed in interpreting the results of the fitting

procedure.

In general, our conclusions about these fitting pro-

cedures are that: (1) reasonably large values of the

coupling constant determined by the fitting procedures

are reliable, but that small values need to be treated
with caution; (2) it is useful to fit a given cross-peak

using more than one method—the resulting spread of

values gives some indication of reliability; and (3)

the v2 plot should be checked for the presence of

multiple minima as these may be an indication of poor

reliability.

Marquez et al. [19] have recently reviewed the large

number of methods which have been proposed for
measuring long-range C–H couplings. Most of these

methods are based on HMQC- or HSQC-type correla-

tion experiments which have been modified to manipu-

late the way in which either or both the proton–proton

couplings and the long-range C–H coupling appear in

the multiplets. The general aim is to achieve a multiplet

from which a splitting can be identified as the long-range

C–H coupling. In this way, the need for any kind of
fitting procedure, such as that described here, is obvi-

ated. However, some of these experiments achieve this at

the cost of considerable complexity and possible com-

promises in sensitivity.

The procedure proposed in this paper relies on the

use of a fitting procedure, and so the data analysis is

inherently more complex than simply measuring a

splitting from a multiplet. In addition, the fitting pro-
cedure requires extra data, but we have shown that by

utilizing the one-bond cross-peaks this extra data can be

acquired at the same time as the HMBC spectrum. The

pulse sequences are not complex and involve no com-

promises. Thus, the approach suggested here represents

a straightforward and efficient way of measuring values

for long-range C–H couplings.
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